Формулы по оптике

Формула	Обозначения		
Геометрическая оптика	10-20-5		
Закон преломления	α угол падения		
sin α	β угол преломления		
$\frac{\sin\alpha}{\sin\beta} = n$	с скорость света в вакууме		
Абсолютный показатель преломления	υ скорость света в среде		
$n = \frac{c}{v}$	л абсолютный показа- тель преломления		
Относительный показатель преломле- ния 2-ой среды относительно 1-ой	л _{1,1} относительный пока- затель преломления		
$n_{2,1} = \frac{v_1}{v_2} = \frac{1}{n_{1,2}}$			
Условие полного внутреннего отражения	α ₀ предельный угол		
$\sin \alpha_0 = \frac{n_2}{n_1}$	полного отражения		
Оптическая сила линзы	D оптическая сила линзы		
$D = \frac{1}{F}$	F фокусное расстояние линзы		
Формула тонкой линзы	d расстояние от пред- мета до линны		
$D = \frac{1}{d} + \frac{1}{f}$	f расстояние от линзы до изображения		
Линейное увеличение тонкой линзы	Н размер изображения		
H f	h размер предмета		
$\Gamma = \frac{H}{h} = \left \frac{f}{d} \right $	Г линейное увеличение линаы		
Волновая и квантовая оптика			
Формула дифракционной решетки	 период двфракцион- ной решетки 		
$d\sin \varphi = k\lambda$	к порядок спектра		
Cuanami, carus	λ длина волны		
Скорость волны	у частота		
$v = \lambda v$			

Условия максимума и минимума интер-	∆d разность хода воли
ференции	
$\Delta d = 2k\frac{\lambda}{2}$	
$\Delta d = (2k+1)\frac{\lambda}{2}$	
Энергия кванта (фотона)	с эмергия
$\varepsilon = hv$	h постоянная Планка
Импульс кванта (фотона)	р импульс
$p = \frac{h}{\lambda}$	
Уравнение Эйнштейна для фотоэффекта	А работа выхода
-	т масса электрона
$hv = A + \frac{mv^2}{2}$	υ скорость электрона
Красная граница фотоэффекта	
$v_{\min} = \frac{A}{h}$	